
UNSTEADY-STATE SLIP OF A GAS NEAR AN 

INFINITE PLANE WITH DIFFUSION-MIRROR 

REFLECTION OF MOLECULES 

M. M. K u z n e t s o v  UDC 533.7 

On the basis  of a " two-point  ~ approx imat ion  for  the dis t r ibut ion function, an approx ima te  
analyt ical  solution is obtained to the Rayleigh problem descr ib ing  (for an a r b i t r a r y  momen t  
of time) the uns t eady- s t a t e  s l ip of a r a r e f i ed  gas near  a su r face  with d i f f u s i o n - m i r r o r  r e -  
f lection of molecules .  In the solution of the p rob lem it  was postula ted  that the c h a r a c t e r -  
is t ic  value of the m a c r o s c o p i c  ve loc i ty  of the gas is smal l  in c o m p a r i s o n  with the speed of 
sound. An approx imate  analogy is es tab l i shed  with the propagat ion of f r ee  v ibra t ions  in an 
electrical line of infinite length. An investigation is made of the limiting transition ~-* 0 (~ 
is the fraction of mirror-reflected particles) in an exact solution of the Boltzmann problem. 
It is shown that, with ff << I, the rate of slip for any given moment of time is determined 

from the hydrodynamic equations of motion. An investigation is made of the nonsingularity 
of the limiting transitions (t-*~, ~-~ 0; cr--* 0, t -~) with determination of the rate of thermal 
slip. 

T h e  R a y l e i g h  P r o b l e m  f o r  a M o v i n g  P l a n e  w i t h  

D i f f u s i o n - M i r r o r  R e f l e c t i o n  o f  M o l e c u l e s  

Let  us cons ider  the p rob lem of the uns teady-s t a t e  motion of a gas,  bounded by an infinite plane, 
which is suddenly se t  into uniform motion (para l le l  with itself) with a constant  veloci ty  w. A solution of 
this p rob lem within the f r a m e w o r k  of the theory  of a continuous med ium has been given in [1, 2]. This un-  
s t eady - s t a t e  flow was invest igated in [3-9] on the basis  of the kinetic theory of gases .  The p r e s e n t  a r t i c l e  
cons iders  the case  of the pulsed motion of an infinite plane with d i f fus ion -mi r ro r  ref lec t ion of molecu les .  
An approx ima te  analyt ical  solution is given to the p rob l em which genera l izes  the solution obtained in [5] 
fo r  the case  of pure ly  diffusion r e f e c t i o n  of molecu les .  

A scheme  of the d i f f u s i o n - m i r r o r  re f lec t ion  of molecu les  was a lso  d i scussed  in [3, 6, 9]. In d is t inc-  
tion f rom the r e su l t s  of these communicat ions ,  valid in the region of a sympto t i ca l ly  sma l l  ( t / t f<< 17 or  
la rge  ( t / t f>>l)  in te rva l s  of t ime  t / t f  (tf is the t ime  of f r ee  flight), the proposed  solution desc r ibe s  the be-  
havior  of the gas a t  an a r b i t r a r y  m om en t  of t ime* f r o m  the s t a r t  of the motion of the infinite plane (y = 0). 

We a s s u m e  that  the veloci ty  w of the plane is smal l  in compar i son  with the speed of sound in the gas.  
In this case ,  the kinetic Bol tzmann equation for  the distr ibution function f(c, y, t) can be l inear ized  with 
r e s p e c t  to the p a r a m e t e r  W/Vw, (Vw= 42kTw/m)  

O~lOt + c,fl~lOy=LP [~ ]. (1) 

Here  ~ is the co r rec t ion  to the equi l ibr ium function f(0) fo r  a gas a t  r e s t ;  ~p ~WVw!; f= f ~ ) ( l +  ~); y is 
the dis tance along no rma l  to the plane y=  0; c is the veloci ty  of a molecule;  ~ [~] is the l inear ized  coll ision 
in tegra l  [10]. 

* In [3] an interpolat ion solution was cons t ruc ted  for  the range  t / t f ~  1. However,  us ing this interpolat ion 
it  was not poss ib le  to de te rmine  the ve loc i ty  of the gas u(t, y) with t / t f ~  1 and y > 0 .  
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As the kinet ic  boundary  condit ion at the wall  y =  0 we a s s u m e  that  pa r t  ( 1 - ~ )  of  the incident  mo lecu l e s  
is r e f l e c t e d  in a m i r r o r  fashion,  while the o ther  p a r t  (~) is r e f l e c t ed  d i f fus ional ly  with a Maxwell ian d i s -  
t r ibu t ion  at  the t e m p e r a t u r e  of  the wall  T w. Then for  the c o r r e c t i o n  go with y = 0 we will  have 

m(% > 0, t, ~==0)- ('I - - ~ )  q:(% < 0, t, y - 0 ) +  2.~-7%, (2) 

where w ~ ll"uv~l~ Vx = CxUw ; 

c x is the p ro jec t ion  of the ve loc i ty  on a d i r ec t ion  pa ra l l e l  to  the plane y = 0. 

F o r  an a p p r o x i m a t e  solut ion of Eq. (1), we use  the fol lowing app rox ima t ion  of  the function go [5]: 

[~-:- = <~ ( ~ . >  o) .... ~o-(ss) _~:,, 

m - i c p - -  = cp (% < o) = a T  (~) ~ .  (3) 

The ve loc i t y  of  the gas u and the c u r r e n t  of an impulse  Pxy a r e  connected  with the funct ions a + and 
a~ by the r e l a t i onsh ips  

t =i  ~ - ~ -  

We mul t ip ly  (1) by the funct ions  ~x, ~x~y and, us ing  app rox ima t ion  (3), we a v e r a g e  the r e s u l t  in the 
space  of the ve loc i ty  c. Then fo r  Maxwell  m o l e c u l e s  [10] we will  have 

OU/8-~ + OP/OY=O; OP/8~ + OU/OY=--P. (4) 

Here  

~=t/tf, Y=y[/~2/lf, lf=2[t/gvz~, tu-lflvw, P=p.~J(V~p~). 

Substi tut ing (3) into boundary  condi t ion (2), we obtain 

~ f  -~- 
~U (~, y = 0) + (2 - -  o) V T  p (~' Y = 0) = ow. 

To solve the s y s t e m  of equat ions  (4) we use  a Lap lace  t r a n s f o r m  [11]: 

:o 

0 

Applying the t r a n s f o r m  (6) to Eq. (4) and taking accoun t  of the ini t ial  and boundary  condit ions,  we 

obtain 

C5) 

(6) 

S~ r & 3P/OY::O; St 5"+ Olf/OY=--.~, 

; ( y  - ~  oo )=  u~Y -+  oo)=0 ,  

, V 2 - 

The solut ion of the s y s t e m  of equat ions  (7) with the boundary  condi t ions  (8), (9) has the f o r m  

(~a- V s  ~ I e x p ( - a I ' )  
0 ( Y , s ) = - 7  - -  , 

P (Y, s )  = ~ f ~  e~v ( -  ~v) , a = l!~-s (s + 1). 

= r  +, + (2- I/T 

(7) 

(8) 

(9) 
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To d e t e r m i n e  the i n v e r s e  t r a n s f o r m s  of the funct ions  1~ and  15, i .e . ,  the i n v e r s i o n s  of the Lap lace  
t r a n s f o r m ,  we use  an in t eg ra t ion  con tour  in the complex  plane ,  shown in Fig .  1. 

A f t e r  s i m p l e  t r a n s f o r m a t i o n s  we obta in  

U = w O  J.-- ~ c ~ ( 2 - - o )  Y-~e- - ' r~=c~  2a2i' 1/-t----:7-'eZ *= '~s in(Yzl / -~)d*  
, ca ~_ . : . 2 ~  " 7  , 

t 1 

(10) 

(ii) 

where 0 is a Heaviside function [Ii], 

0=0(~--Y), 0(x > 0)=i, 0(x < 0)-=0; e -~ -- -~- "~ (2 -- c)~ -- c~. 

With y =0, o -= i, formulas (i0), (II) coincide with a solution obtained earlier for the case of a diffu- 
sionally reflecting wall [5]. 

Let us investigate in more detail the dependence U(T, Y =0), P(r, Y=0). For an interval of time much 

less than tf(r << i), expanding the expressions under the integration sign in (i0), (Ii) in series in terms of 

r, and taking account of the tabulated values of the integrals [12], we will have 

U : ~,0 (~) [ -~ --  21(2~ (2 -- o) 1 / - ~  ~ l / . ~  a] -~- 0 (~2)] 
o> + o - o) + 

P=w0(x){(o/(2 -- e) 1/~/-2) - -  (0%'2[(2 - -  ~)kL~7-/2 + ~]z) + 0 (z-~)}, 

A c o m p a r i s o n  with the exac t  so lu t ion  of Eq. (1) n e a r  the l i m i t  r - . - 0  [9] U(T, Y =0) = (or /2)+ [cr ( 2 - ~ ) / 8 ] r +  
0(rz); P = 1 + 0(r) ,  shows  tha t  the d i f f e r e n c e  in the va lue  of the ve loc i ty  U(Y = 0, T) does  not  exceed  5%, and, 
in the va lue  of P,  10%. This  e x a c t n e s s  can be c o n s i d e r a b l y  i n c r e a s e d ,  as  is  shown in [13] (with cr = 1, r<< 1), 
even  a f t e r  the f i r s t  i t e r a t i o n  of the z e r o  a p p r o x i m a t i o n  (3). 

F o r  i n t e r v a l s  of  t ime  m u c h  l a r g e r  than tf(r>> 1), a f t e r  an a p p r o p r i a t e  s i m p l i f i c a t i o n  of f o r m u l a s  (10), 
(ii), we obta in  

[ :o+0(§ u (-r, Y = o) -= ~:o (-r) 1 - ~ V---~ 

I , 

The t ime  r e q u i r e d  fo r  es tabl isb_ment  of s t e a d y - s t a t e  s l ip  T o. in a p lane  with i ncomple t e  a c c o m o d a t i o n  
(cr< 1) is ~,-a t i m e s  g r e a t e r  than the t i m e  Tt (cr=l )  , 

T : / T  z ,=~-~-. 

To d e t e r m i n e  the va lues  of the func t ions  U(r ,  Y = 0 ,  ~), P ( r ,  Y = 0 ,  or) in the i n t e r m e d i a t e  r ange  (r  ~ 1) 
n u m e r i c a l  i n t eg ra t i on  of dependences  (10), (11) is  needed.  

The r e s u l t s  of ca l cu la t ions  (for d i f f e r e n t  va lues  of r a r e  g iven  in Fig .  2 and  Fig .  3. 

In the reg ion  ~ << 1, going o v e r  in f o r m u l a  (10) to the v a r i a b l e  ~ = zo --t,  we obtain  

U ( ~ , Y = O , ~ ) = ~ O ( ~ )  i-- ) . ~ o  i ~  a ~ + O ( ~ )  . 
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Analogy with the Propagation of Free Vibrations 

in an Electrical Line of Infinite Length 

The differential equations describing the propagation of free vibrations in an electrical line have the 
form [14] 

LOI/Ot + OV/Oy = -- BI;  COV/Ot + OI/Oy = GV, (12) 

where  L is the inductance; C is the capaci tance;  G is the leakage;  R is the ohmic r e s i s t ance  (L, C, G, R 
a re  r e f e r r e d  to unit length); I is the s t rength  Of the current ;  V is the voltage.  

It can be seen that  the s y s t e m s  of equations (4) and (12) coincide if we se t  L = 1, C = 1, R = 1, C = 0, 
V=U,  I = P .  

The initial conditions U = P=  0 co r r e spond  to an open line at the momen t  of t ime  t -  < 0, and the bound- 
a r y  conditions (5) and (8), to conditions a t  the ends of the line. F o r  example ,  condition (8) co r responds  to 
the absence  of a r e f l ec ted  wave f r o m  the end of the line, while the condition (5) V(t, y=  0) = e -z0I ( t ,  y=0)  
means  that the e m f  of the ba t t e ry  e=~v is made up of the e m f  at  the s t a r t  of the line V(y=0)  and the voltage 

drop in the ohmic r e s i s t a n c e  Zo(Z o _:~/~-~ 2-~e). 

Equations (12) can be brought to a single te legraphic  equation with r e s p e c t  to V or  I [14], 

02V/Ot 2 --  O~V/@zfl 4- OV/Ot=O. (13) 

Thus, the solution of the s y s t em  of equations (4) is equivalent  to solution of the te legraphic  equation 
(14), descr ib ing  the propagat ion of f r e e  v ibra t ions  in an e l ec t r i ca l  line of finite length. 

U n s t e a d y - S t a t e  S l i p  n e a r  a S u r f a c e  w i t h  A l m o s t  

M i r r o r  R e f l e c t i o n  ( e  << 1) o f  M o l e c u l e s  

In the hydrodynamic  solution of the p r o b l e m  of sl ip (i.e.,  with T>>I) the value of the der iva t ive  0 P / 0 t  
is smal l ;  the re fo re ,  Eq. (4) and the boundary condition (6) a s s u m e  the fo rm 

OU/OT + OP/OY=O; OU/OY=--P; (14) 

~Y + (2 - -  ~ ) ] / ~ ) - 2 0 u / o r = ~ w .  (15) 

Applying a Laplace  t r a n s f o r m  to re la t ionships  (14), (15), analogously to what has gone before  we 

obtain 
~]=~wexp (--  V-SY) /S[~  + (2 - ~)Va~] /S ' ] .  

The inve r se  t r a n s f o r m  l~ can be found f rom tables  [15] 

or  by d i r ec t  in tegrat ion in the complex plane,  along the contour i l lus t ra ted  in Fig.  4, 

2a6 ~ "e -~z' cos (Yz) dz 2o~ ~ e -~z" sin (Yz) dz (17) 
U = 41 -- -~- J o~ + z26 " n j z (a2 4 -  z~5 ~) 

0 0 

H e r e  6 2 = 82+f f  2. 

With a-'* 0, fo rmulas  (10) and (17) coincide. Thus, in the region of smal l  values  of ~ (if<< 1) the so -  
lution of Eqs. (4) tends toward the hydrodynamic  solution. This  fac t  is not the r e su l t  of chance. We shall  
show- that  a t  a l m o s t  the whole m i r r o r  su r face  (a << 1) the sl ip becomes  apprec iab ly  di f ferent  f r o m  zero  only 
under hydrodynamic  slip conditions (T >> 1). 

we  mult iply Eq. (1) by the function ~(t, c, y) and in tegra te  over  all  the va r i ab les .  Taking account of 
the initial  and boundary conditions fo r  ~, we obtain 

c~ co T T 
~ . ~ . \%~.9[~]>dt :=--~- ~(2~.--~--)[(2--~)(p---~2cr~.~]d~dt, (18) 

0 0 0 0 t y > 0  
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where ~ = ~ / w ,  (~)=fe-'rpd~. 

The lef t -hand pa r t  of the equali ty is a posi t ively  de te rmined  quantity, since < ~ [ ( P ] }  < 0 [10]. T h e r e -  
fore ,  with ~= 0, the functions ~ = 0. In addition, by v i r tue  of (18) and of the inequality 

<qD~[qD]> > FI(~ ~> , Fl=const > 0, (19) 

valid for  " r ig id"  potent ials  [10], we obtain 

ce  

,~t (20) ! <;-b du < + , ,  
0 

Thus, for  the m o m e n t s  of t ime T ~ 1, sl ip (with an a c c u r a c y  up to quanti t ies on the o rder  of ~) is ab -  
sent,  while, in the range  7>> 1, i t  co r re sponds  to the hydrodynamic  solution of the p rob lem.  

As a second example, let us consider the problem of unsteady-state thermal slip, formulated in [16]: 

0~ a~ , ( @ )  
aT ~- cU ~ -:- T~c~, ~2 _ = ~ [~J; (21) 

~(g, t=0)=%~=T=; ~(g=0, t, c~,> 0)=(t  - -  a)~(cy < 0). (22) 

Here  T x is the gradient  of the t e m p e r a t u r e  in the di rect ion x, "included" in the momen t  of t ime t = 0, 
and, with t> 0, mainta ined constant  in value,  both in the volume of the gas (y> 0) and along the plane (y =0); 
Tx = Twl(dT/dx); ~xq~t~'x is an Enske function [10]. 

It  can be seen that,  for  the function r = ~-~x~'xq~t, Eq. (21) and conditions (22) coincide with the co r -  
responding re la t ionships  of the Rayleigh problem,  if, in the boundary condition (2), the " sou rce"  2r  is 
r ep laced  by the "s ink" a~x T x t t .  The re fo re ,  the preceding conclusions,  obtained on the basis  of re la t ion-  
ships (18)-(20), a re  valid a lso  for t he rm a l  sl ip with smal l  values of t h e  p a r a m e t e r  (r. To de te rmine  the 
function U(t, y) in this case we mus t  find the solution of the hydrodynamic  equations (14) with the boundary 
condition with y = 0, obtained, as in a number  of a r t i c l e s ,  on the bas i s  of solution of the s t eady-s t a t e  var ian t  
of Eq. (1) in a Knudsen l ayer  [16-18]: 

ou(t,:/ O) + ~17~, U (t ,  g = O) = ~3il og 

where ~i, VT a r e  the coefficients  of i so the rma l  and the rma l  slip (of o rde r  1); l is the length of the f r e e -  
flight path. 

Analogously to re la t ionship  (16) we obtain 

U(%Y) =~1r eric Y --exp ' Y @ r erfc <,li 21f~ - ]" 

From this, taking into account that, with if-* 0, ~?T ~ ~?(ff = 0) [16-18], '~i-* (2/ff)~ [19], we will have 

U =: ~tiP, I --  exp ('2~ erfc ~ t ; ~ ) _  (23) 

If the m o m e n t  of t ime  T is given and ~ 0, then, by v i r tue  of (23), U ~ ~ V~--*0. 

V ~ If  the value of ~ is given and ~'-* 0, then U ~ t ~ ~ --, I. 

Thus,  s t eady - s t a t e  t he rma l  slip a t  a m i r r o r  wall  (~--* 0) [16-18] should be unders tood as  the l imit ing flow 
at ta inable  with ~---* ~, ff-~ 0 [16]. 

The author  thanks V. V. Struminski i ,  V. N. Zhigulev, and V. P. Shidlovskii for  the i r  evaluation of the 
work. 
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MOTION OF AN ELECTROLYTE-GAS INTERFACE 

IN AN ELECTRICAL FIELD 

V. P. Blinov and Yu. V. Zhilin UDC 537.84 

The ar t ic le  d iscusses  the phenomenon of the motion of an e l e c t r o l y t e - g a s  interface,  f i r s t  
observed on e lec t r ica l  levels.  It gives a comparat ive charac ter iza t ion  of the phenomena, 
for  purposes  of p rac t ica l  use, with a solution of p roblems  of control by the position of a 
l i qu id -  liquid interface.  

While the mechanics  of a liquid has been r a the r  well studied at the presen t  t ime, the problem of ef-  
fect ive control by the position of a liquid has not yet  been solved. It is a question here  not of mechanical  
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